
Reports and Articles

Beyond Programming Languages
Terry Winograd
Stanford University

As computer technology matures, our growing
ability to create large systems is leading to basic
changes in the nature of programming. Current
programming language concepts will not be adequate
for building and maintaining systems of the complexity
called for by the tasks we attempt. Just as high level
languages enabled the programmer to escape from the
intricacies of a machine's order code, higher level
programming systems can provide the means to
understand and manipulate complex systems and
components. In order to develop such systems, we need
to shift our attention away from the detailed
specification of algorithms, towards the description of
the properties of the packages and objects with which
we build. This paper analyzes some of the shortcomings
of programming languages as they now exist, and lays
out some possible directions for future research.

Key Words and Phrases: programming,
programming languages, programming systems, systems
development

CR Categories: 4.0, 4.20, 4.22, 4.40

Introduction

Computer programming today is in a state of crisis
(or, more optimistically, a state of creative ferment).
There is a growing recognition that the available pro-
gramming languages are not adequate for building com-
puter systems. Of course, as any first year student of
computation theory knows, they are logically sufficient.
But they do not deal adequately with the problems we
face in the day-to-day work of programming. We become
swamped by the complexity of large systems, lost in code
written by others, and mystified by the behavior of our
almost debugged systems. When we look to the inte-
grated multiprocessor systems that will soon dominate
computing, the situation is even worse.

This crisis in software production is far greater (in
overall magnitude at least) than the situation of the early
50's that led to the development of high level languages
to relieve the burden of coding. The problems are harder
to solve, and the costs of not solving them are in the
hundreds of millions. "The symptoms appear in the form
of software that is nonresponsive to user needs, unrelia-
ble, excessively expensive, untimely, inflexible, difficult
to maintain, and not reusable." [3, p. 26.] There are
many ways to improve things a little, and they are being
tried. But to achieve a fundamental jump in our pro-
gramming capacity, we need to rethink what we are
doing from the beginning.

The Problem

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's address: T. Winograd, Computer Science Dept., Stanford
University, Stanford, CA 94305.
© 1979 ACM 0001-0782/79/0700-0391 $00.75

391

I believe that the problem lies in an obsolete view of
programming and programming languages. A widely
accepted view can be paraphrased: The programmer's
job is to design an algorithm (or a class of computations)
for carrying out a task, and to write it down as a complete
and precise set of instructions for a computer to follow.
High level programming languages simplify the writing
of these instructions by providing basic building blocks
for stating instructions (both control and data structures)
that are at a higher level of the logical structure of the
algorithm than those of the basic machine.

Communications July 1979
of Volume 22
the ACM Number 7

This view has guided the development of many pro-
gramming languages and systems. It served well in the
early days of computing, but in today's computational
environment, it is misleading and stultifying. It focuses
attention on the wrong issues and gives the most impor-
tant aspects of programming a second-class status. It is
irrelevant in the same sense that binary arithmetic is
irrelevant--the things it deals with are a necessary part
of computing, but should play a subsidiary rather than
central role in our understanding.

As computer technology (for both software and hard-
ware) matures, our growing ability to create complex
systems has led to three basic changes in the nature of
programming:

1. Computers are not primarily used for solving well-struc-
tured mathematical problems or data processing, but in-
stead are components in complex systems.

According to Department of Defense studies [3],
more than half of DoD software costs are associated with
"embedded computer systems." An embedded computer
system is "one that is logically incorporated in a larger
system--e.g, an electromechanical device, a tactical sys-
tem, a ship, an aircraft, or a communications system--
whose primary function is not computation." Of course,
embedded computer systems are not unique to the DoD.
Many computer scientists spend the majority of their
time dealing with embedded computer systems such as
message systems and text editing and formatting systems.
The example discussed below is a large embedded system
in a university context. As the microcomputer revolution
continues, this change will become even more extreme.
There will be computers embedded in every conceivable
kind of electrical and mechanical system, and applica-
tions like text editing and message processing will be-
come widespread on the scale of today's telephone net-
work. As Fisher [3] notes:

Embedded computer software often exhibits characteristics that
are strikingly different from those of other computer applications
Many embedded computer applications require software that will
continue to operate in the presence of faults For example, the
applications may require the monitoring of sensors, control o f equip-
ment display, or operator input processing. They must interface
special peripheral equipment Software must sometimes be able
to respond at periodic (real time) intervals, to service interrupts
within limited times, and to predict computation times In many
applications. . , it is necessary to access, manipulate and display large
quantities o f data. Much of this data is symbolic or textual rather
than numeric, and must be organized in an orderly and accessible
fashion.

2. The building blocks out of which systems are built are
not at the level of programming language constructs. They
are "'subsystems" or "'packages," each of which is an
integrated collection of data structures, programs, and
protocols.

By making use of existing modules, a programmer
can deal with design at a higher level, creating an inte-
grated system with capacities far greater than a program
that could be built with the same effort "from scratch."

392

Components for general tasks (such as memory manage-
ment, user interface, file management, and network com-
munication) can be designed once, rather than recon-
structed for each system that needs the capability. Un-
fortunately, in current programming practice this is more
of an ideal than a reality. The difficulties of using existing
packages often make it easier to replicate their function
than to integrate them into a system. The only way such
packages are generally used is by building programs
within an "operating system" that provides facilities
within a uniform environment. Only those packages that
are needed by the majority of users find their way into
operating systems, and the facilities for using them are
complex and ad hoc relative to modern programming
languages. We need better ways to deal with the prob-
lems of "programming in the large."

As noted in an IBM report on large software systems
[1, p. 6], " . . . The understanding of how programs work
individually and in cooperation with each other. . , re-
mains very difficult to generalize, teach, communicate,
or even preserve, due to lack of easy 'externalization,'
i.e. representation, of ideas." Once we begin to deal with
networks of processors, it will become even more impor-
tant to deal explicity with properties of systems which
integrate many independent components.

3. The main activity of programming is not the origination
o f new independent programs, but in the integration, mod-
ification, and explanation of existing ones.

This third change grows from the first two. As we are
able to build more complex programs, we develop sys-
tems that grow to fit an environment of needs, rather
than carrying out a single well-specified task. An embed-
ded system (such as one for airline reservations or text
preparation and formatting) evolves over many years,
increasingly fitting the needs of those who use it, and
incorporating new capacities as hardware advances make
them practical. The DoD study [3, pp. 24-25] noted that,
"The programs are frequently large (50,000 to 100,000
lines of code) and long-lived (10 to 15 years) Change
is continuous because of evolving system requirements--
annual revisions are often of the same magnitude as the
original development The majority of costs are in-
curred in software maintenance rather than develop-
ment."

As additional needs and possibilities arise, it should
be possible to modify and combine existing well-tested
systems rather than build new ones. In most cases, the
needs for continuity in the use of the system (including
"upward compatibility" for existing data and user pro-
grams) make it impractical to start from scratch. Using
current programming techniques, systems often reach a
point at which the accretion of changes makes their
structure so baroque and opaque that further changes
are impossible, and the performance of the system is
irreversibly degraded. The situation is further compli-
cated by the fact that modifications are often done not
by the original builders, but by new programmers with

Communications July 1979
of Volume 22
the ACM Number 7

an incomplete or inaccurate understanding of the system.
As Wulf [4] points out, "Another component of the
software crises is less commonly recognized, but, in fact,
is often more costly.., namely, the extreme difficulty
encountered in attempting to modify an existing pro-
gram The cost of such evolution is almost never
measured, but, in at least one case, it exceeded the
original development cost by a factor of 100."

The difficulties in building and modifying large sys-
tems have long been recognized and lamented. They
have led to various schools of "structured programming"
and to the emphasis on restriction and discipline in the
design and use of programming languages. There is a
large body of lore shared by practicing programmers,
providing ways to recognize the problems and guidelines
for avoiding the most obvious of them. These include
bodies of standards and conventions designed to avoid
misunderstanding and miscommunication. But ulti-
mately the solution lies not in greater discipline but in
more adequate tools.

Towards a Solution

Just as high level languages enabled the programmer
to escape from the intricacies of a machine's order code,
higher level programming systems can provide help in
understanding and manipulating complex systems and
components. We need to shift our attention away from
the detailed specification of algorithms, towards the de-
scription of the properties of the packages and objects
with which we build. A new generation of programming
tools will be based on the attitude that what we say in a
programming system should be primarily declarative, not
imperative: The fundamental use of a programming sys-
tem is not in creating sequences of instructions for accom-
plishing tasks (or carrying out algorithms), but in ex-
pressing and manipulating descriptions of computational
processes and the objects on which they are carried out.

To some extent, this attitude coincides with current
work on specification languages, structured program-
ming formalisms, and denotational theories of program-
ming semantics. All of these emphasize the description
of the results of computations, rather than instructions
for carrying them out. Dijkstra [19], for example, de-
scribes a methodology for understanding programs in
terms of predicate transformers from an initial to final
state. A predicate transformer is "a rule telling us how to
derive for any post-condition R the corresponding weak-
est precondition.., for the initial state such that the
attempted activation will lead to a properly terminating
activity that leaves the system in a final state satisfying
R." He argues that "a program written in a well-defined
programming language can be regarded as a mechanism
that we know sufficiently well, provided we know the
corresponding predicate transformer." Languages such
as Lucid [16] carry this philosophy directly into the
programming formalism. Lucid is a strictly denotational

393

language, and the statements of a Lucid program can be
interpreted as true mathematical assertions about the
results and effects of the program.

There is a critical difference, though, which is lost if
we look only at the distinction between imperative and
declarative. In stating that a programming system helps
us to manipulate "descriptions of computational proc-
esses," we are saying something quite different from
"assertions about the results and effects." In order to
clarify this, it is useful to distinguish three types of
specification:

(1) Program specification. A formal structure which can
be interpreted as a set of instructions for a given
machine. This is the imperative style of traditional
programming languages.

(2) Result specification. A process-independent specifi-
cation of the relationships between the inputs (or
initial state), internal variables, and outputs (or
resulting state) of the program. This is the specifi-
cation style advocated by Dijkstra and in work on
program verification and transformation.

(3) Behavior specification. A fbrmal description of the
time-course of activity of a machine. Any such
description selects certain features of the machine
state and action (e.g. input and output activities,
use of memory resources, communication events
among processes), without specifying in full detail
the mechanisms which generate these.

A behavior specification is like a result specification
in that it characterizes what will be done, rather than
giving commands for how to do it. It is different in that
it is explicitly concerned with issues of sequence, and
potentially with real-time measures as well. In practice,
result specifications for systems of significant size factor
the specification, often using sequence as a dimension of
factorization. In a behavior specification, the time-course
description is an essential part of the description of what
the system as a whole does, not a convenience for
factoring it into result-producing modules.

Programming in the future will depend more and
more on specifying behavior. The systems we build will
carry out real-time interactions with users, other com-
puters, and physical systems (e.g. for process control). In
understanding the interaction among independent com-
ponents, we will be concerned with detailed aspects of
their temporal behavior. The machine must be.thought
of as a mechanism with which we interact, not a math-
ematical abstraction which can be fully characterized in
terms of its results.

Current languages provide only scattered specialized
mechanisms for description of either results or process.
Declarations are a ubiquitous form of low level descrip-
tion, and assertions about the state of a computation are
occasionally included. But if we look at what a program-
mer would say about a program to a colleague who
wanted to work on it or use it, very little of the description
appears anywhere in the "code." If (either because of

Communications July 1979
of Volume 22
the ACM Number 7

idealism or coercion) the programmer has included com-
ments, they can provide useful but local description. If
further (almost always through coercion) the program
has been documented, there may be more global descrip-
tions. In large systems, documentation will include a
careful specification of protocols and conventions not
belonging to any one program, but vital to the system as
a whole. It may also include process descriptions along
with the result descriptions. But these various pieces of
description are scattered, and for the most part not
accessible in any systematic fashion.

I want to turn the situation on its head. The main
goal of a programming system should be to provide a
uniform framework for the information that now appears
(if at all) in the declarations, assertions, and documen-
tation. The detailed specification of executable instruc-
tions is a secondary activity, and the language should not
be distorted to emphasize it. The system should provide
a set of tools of generating, manipulating, and integrating
descriptions of both results and processes. The activity
that we think of as "writing a program" is only one part
of the overall activity that the system must support, and
emphasis should be given to understanding rather than
creating programs.

The rest of this paper explores some of the conse-
quences of this view, and makes some suggestions as to
what a higher level programming system might look like.
It is an attempt to lay out the problems, not to solve
them. It will take many years of research before these
speculations can be backed up with concrete evidence.

A Motivating Example

One of the best ways to understand a general view of
computing is to look at the examples used by those who
hold it. Both Knuth's opus, The Art of Computer Pro-
gramming [21], and Dijkstra's A Discipline of Program-
ming [19] begin by discussing the Euclidean algorithm.
In a clear and simple way it exemplifies the basic notions
of algorithm and program as a mathematical abstraction.
The Lisp 1.5 Manual [55] includes the Lisp interpreter
written in Lisp, illustrating the manipulation of symbolic
structures and the ability to treat the programs them-
selves as symbolic data. The view proposed in this paper
is best illustrated by an example at a very different level.

Imagine that you have come to work as a system
designer and programmer for a large university. You are
given the following system development task.

The current situation. The univeristy administration
has a computer system for scheduling and planning room
use. Users at several sites on campus access the system
through interactive graphics terminals that display build-
ing floorplans as well as text and other graphic data.
There is a minicomputer running each cluster of termi-
nals, connected to the central campus facility by a com-
munication network. Each cluster has a device capable
of printing out floorplans and graphic data like that

394

displayed on the terminals. Large-scale data storage is at
the central campus computer facility.

The system keeps track of the scheduled use of all
rooms, such as long-term lab and office assignments,
regular class schedules, and special events. It is able to
answer questions about current scheduled use and avail-
ability. Querying is done from the terminals, through
structured graphic interaction (menus, standardized
forms, pointing, etc.) and a limited natural language
interface. The system does not make complex abstract
deductions, but can combine information in the database
to answer questions like "Is there a conference room for
40 people with a projection screen available near the
education building from 3 to 5 on the 27th?" Users with
appropriate authorization enter new information, includ-
ing the scheduling of room use and changes to the
facilities (including the interactive drawing of new or
modified floorplans). In addition to the current assign-
ments, the system keeps a history of use for analysis.
Standard statistical information and data representations
(such as tables, bar charts, graphs, etc.) are produced on
demand for use in long-range planning.

Your assignment. The dean wants the system to pro-
vide more help in making up the quarterly classroom
assignments. It should be possible to give it a description
of the courses scheduled for a future quarter and have it
generate a proposed room assignment for all courses. In
deciding on assignments, the system should consider
factors such as expected enrollment (using past data and
whatever new information is available on estimated en-
rollments), the proximity of rooms to the departments
and teachers involved, the preference for keeping the
same location over time, and the nature of any special
equipment needed. It should print out notices summariz-
ing the relevant parts of the plan for each teacher,
department, dean, and building supervisor. Any of these
people should be able to use the normal querying system
to find out more about the plan, including the motiva-
tions for specific decisions. Properly authorized repre-
sentatives of the dean's office should be able to request
changes in the plan through an interactive dialog with
the system in which alternatives can be proposed and
compared. When a change is made, the system should
readjust whatever is necessary and produce new notifi-
cations for the people affected.

A system like this is just at the edge of our program-
ming powers today. It would take many programmer-
years of effort to build and would be successful only if
the project were managed extraordinarily well, even by
the standards of the most advanced programming labo-
ratories. But it is not hard because of the intrinsic diffi-
culty of the tasks the system must carry out. It combines
hardware and software facilities that have been demon-
strated in various combinations a number of times. Even
the question-answering and assignment-proposing com-
ponents are within the bounds of techniques now consid-
ered standard in artificial intelligence.

The problem lies in the difficulties of organizing

Communications July 1979
of Volume 22
the ACM Number 7

complex systems. The integration of all of the compo-
nents of the "initial system" would be a major achieve-
ment, calling on our best design tools and methodologies.
The idea that a new programmer could come in to such
a system and make changes widespread enough to handle
the "assignment" is enough to make an experienced
programmer shudder. It would be hard enough to add
new types of questions (such as explanations for deci-
sions), new information (such as distances and estimated
enrollments), and new output forms (such as schedule
summaries for departments). But even more, we are
trying to integrate a new kind of data (projected plans)
into a system that was originally built to handle only a
single current set of room assignments and a record of
their history. These projected plans must be integrated
well enough for all of the existing facilities (including
floorplan drawing, question answering, statistics gather-
ing, etc.) to operate on them just as they do with the
initial database.

Three Domains of Description

A system of this complexity can be viewed in each of
three different "domains," subject, interaction, and imple-
mentation. Each viewpoint is appropriate (and necessary)
for understanding some aspects of the system and inap-
propriate for others. We will look at the example from
each of these viewpoints in turn, then discuss how they
might be embodied in a programming system.

The subject domain. This system, like every practical
system, is about some subject. There is a world of rooms
and classes, times and schedules, that exists completely
apart from the computer system that is understood as
referring to them. The room or the course cannot be in
the computer- -only a pattern of bits which we interpret
as a description of it. One of the primary tasks in
programming is to develop a set of descriptions that are
adequate for talking about the objects being represented.
There are descriptions for things we think of as objects
(e.g. buildings, rooms, courses, departments) and also for
processes (e.g. the scheduling of events). These descrip-
tions are relative to the goals of the system as a whole
and embody a basic view of the problem. For example,
what it takes to represent a room would be different for
this system and for a system used by contractors in
building construction.

All too often the development of descriptions in this
domain is confused with the specification of data struc-
tures (which are in the domain of implementation). In
deciding whether we want a course to be associated with
a single teacher, or to leave open the potential represen-
tation of team-teaching, we are not making a data struc-
ture decision. The association of a teacher (or teachers)
with a course may be represented in many different data
structures in many different components of the system.
One of the most common problems in integrating systems
is that the components are based on different decisions

395

in the subject domain, and therefore there is no effective
way to translate the data structures.

Current work on data structure abstraction [33, 34,
36, and 38] is a step towards the systematic separation of
subject domain decisions from their implementation.
Representation languages in artificial intelligence pro-
vide additional structure for stating the relationships
among abstractions [5, 6, 9, and 10]. A programming
system needs to provide a powerful set of mechanisms
for building up and maintaining "world views"--coher-
ent sets of description structures in the subject domain
that are independent of any implementation. Each com-
ponent can then implement part or all of this in a way
that will be consistent with both the structure of that
component and the assumptions made in other compo-
nents.

A complex system like the one described above will
need hundreds of different categories of objects. Some
of these (such as classrooms and courses) will be unique
to the system. Others (such as times and dates, schedules,
physical layouts) will be shared across a wide range of
systems. They will be related into hierarchies of abstrac-
tion. We can think of a seminar, a course, and a special
lecture as examples of a more general class of event, all
having a time, a place, etc. For some purposes, this is the
right level of generality. For other purposes, we need to
distinguish carefully and use special information associ-
ated with each. A major part of building up systems will
be the systematic development of descriptions that pro-
vide a uniform medium for describing objects and their
interactions.

The domain of interaction. Every functioning system
can be viewed as carrying on an interaction with its
environment. As we will discuss in a moment, the choice
of "system" and "environment" is relative to a specific
viewpoint, but for the moment let us consider the system
as viewed by the users. In this domain, the relevant
objects are those that take part in the system's interac-
tions: users, files, questions and answers, forms, maps,
statistical summaries and notifications to departments.
The processes to be described are those like querying the
system, decribing a new event to be scheduled, and
proposing a schedule for a new quarter.

The domain of interaction is concerned with descrip-
tions that are largely orthogonal to those in the subject
domain. We can talk about a question as having certain
characteristics (e.g. looking for a yes-no answer) inde-
pendently of whether it is about a room or a lecture. We
can talk about the filling out of a form without reference
to its specific contents. It is also (and more importantly)
independent of the domain of implementation. From the
traditional viewpoint this independence is a bit more
difficult to see than the independence of interaction and
subject matter. Whereas a subject domain object (like
classroom) clearly cuts across large parts of the system,
an interaction object (like a question or the process of
filling out a form) is typically handled by a single com-
ponent and described in terms of its implementation. But

Communications July 1979
of Volume 22
the ACM Number 7

for the same reasons that we want to keep subject domain
descriptions independent of their implementations, we
must do the same with interaction descriptions.

This view can be applied recursively to subparts and
components of the system. In looking at one part (such
as the on-site processor and its cluster of terminals) we
can view it as an independent system interacting with an
environment including both the users and the other parts
of the overall system, such as the centralized data store.
Even within a single implementation module (e.g. the
question-answerer), we often want to describe what is
happening as an interaction between several conceptual
subsystems (the parser, the semantic analyzer, etc.). As
with the larger system, it is vital to keep in mind the
distinction between the interaction and implementation
domains. In order to usefully view a system as made up
of two distinct subsystems, they need not be implemented
on physically different machines, or even in different
pieces of the code. In general, any one viewpoint of a
component includes a specification of a boundary. Be-
havior across the boundary is seen in the domain of
interactions, and behavior within the boundary is in the
domain of implementation. That implementation can in
turn be viewed as interaction between subcomponents.

It is in the domain of interaction that there is cur-
rently the most to be gained from developing bodies of
descriptive structures to be shared by system builders.
There are already many pieces that can be incorporated,
including protocols (e.g. network communication proto-
cols, graphics representation conventions), standardized
interaction facilities (e.g. ASKUSER and DLISP (Dis-
play Lisp) in Interlisp [57, 58], the Smalltalk display
programs [35]), front-end query packages (in various
artificial intelligence programs), database standards, and
so forth. Currently each of these is in a world and
formalism of its own. Given a sufficiently flexible tool
for describing and integrating interaction packages, this
level of description will be one of the basic building
blocks for all systems.

The domain of implementation. Every computer sys-
tem operates on a set of physical devices with hardwired
mechanisms for storing and manipulating data. It is in
this domain that we normally think of programming.
The detailed choice of algorithms, data structures, and
configuration is determined by properties of the hard-
ware and descriptive languages we have available for
specifying its behavior. However, it would be a mistake
to equate this domain with our current notions of pro-
gramming. The objects in this domain include everything
from individual memory bits and subroutines to subsys-
tems (e.g. the file system, the memory management
system, the operating system), running processes, hard-
ware devices, and code segments. They include those
things we talk about in programs and the debugger, and
those found in machine and hardware manuals. In this
domain, as in the others, a uniform system for description
is needed, which is not primarily a language for speci-
fying a set of instructions.

396

In addition to all those things that are directly deriv-
able from the code, the manuals, and the state of the
machine, there is also a body of process description. For
example, it may be a property of a specific memory-
management package that it periodically undergoes a
garbage collection period of up to 5 seconds during
which no new memory allocations can be made. Such
"performance" characteristics may be vital for under-
standing the interactions of a component with the rest of
the system, but are not explicit in its code. Other descrip-
tions bring into focus things that may be implicit in the
code. A file system may delete a file if its creation process
is interrupted in certain ways that would leave it in
danger of being inconsistent. The code that does this
may be distributed through various checks and actions,
but for the programmer attempting to understand the
program it is necessary to have a coherent overview of
what is happening.

Similarly, many of the things we think of as proper-
ties of data structures are actually conventions spread
through the code that manipulates them. Much of the
work in structured programming has been to isolate these
conventions into access functions that go into a "module"
with the data structure [33, 36, and 38]. The object-
oriented style of programming encouraged by Smalltalk
[35] is another attempt to provide this kind of modularity.
A system for implementation description would provide
for stating these in a more general way along with those
things that now appear only in the comments. As with
procedures, data structures can also have implicit prop-
erties (e.g. the expected maximal size of variable length
fields) that need to be stated explicitly in order for a
person to understand how they will interact with other
components.

The boundary between hardware and software has
become increasingly blurred in the past few years
through developments such as microcode, uniform logic
arrays, and the extensive use of virtual machine archi-
tecture. A programming system based on description
would go further in unifying our approach to different
levels of architecture. The emphasis is on an overall
description of a component rather than the instructions
needed to cause some piece of hardware to run it. A
piece of software and a piece of hardware designed to
achieve the same purpose would have descriptions that
differed in details (e.g. timing), and in the specific aspect
that described the code (or logic circuits) used to carry
out the steps. They might be identical in the domain of
interaction, and even to a large degree in the domain of
implementation (for example, in the logical description
of their data structures).

A Sketch of a Higher Level Programming System

So far we have been talking in a general way about
the different domains of description and the kinds of
things that might be said about a component or system

Communicat ions July 1979
of Volume 22
the ACM Number 7

from each of their viewpoints. This does not yet provide
a coherent picture of what a program will be. What do
we see on the printed page or the screen? How is it
organized? How do we do anything with it?

Once again it is important not to let our preconcep-
tions get in the way. Notions such as code, listing, file,
and compilation are based on the idea of a program as
a set of instructions. There need not be any directly
corresponding objects in a higher level system. Instead,
it should be based on something much more like what
we now think of as an artificial intelligence system with
its "knowledge base" of assertions and procedures. There
will be a set of interrelated descriptions, stored in a form
that makes it possible to retrieve, manipulate, and display
them. These will include prototypes for categories of
objects and processes (like classroom and filling out a

form) and instances, which correspond to individual ob-
jects and processes in one of the domains (such as the
course CS 365 in Winter 1978, the contents of the third
page of next quarter's schedule, and the process currently
running in the database server). Instances can be de-
scribed by more than one prototype, and prototypes are
related into hierarchies with different degrees of abstrac-
tion. The details of all this are still a matter for extensive
research. One set of possibilities is being explored in
KRL [6, 7], but the basic idea of higher level systems
could be implemented using other descriptive represen-
tations, such as semantic networks [8, 10, 14, and 15] and
other frame-based systems [9, 11].

In addition to the basic description system, there will
be a wide range of commonly useful prototypes and
instances. Some of them (e.g. graphics formats, dates and
times, communication protocols) will be in the subject
and interaction domains. Others (such as the data struc-
tures used in a particular database) will be in the imple-
mentation domain. Some (such as descriptions of specific
pieces of hardware and software that are being used) will
be specific to the programming system. Others (such as
those for abstract objects like sets and sequences, and for
process structures) will be very general. In approaching
a problem, a programmer will make use of this vocabu-
lary of concepts and descriptive categories, both for
interfacing with existing components and for organizing
new ones.

Earlier in the paper, we discussed the need for pro-
gramming systems based on the description of both
results and processes. In the light of the above discussion,
we can see that this applies not only to the implementa-
tion domain, but to the others as well. By shifting em-
phasis away from programs made up of instructions
(which are necessarily in the implementation domain) to
a description of processes and results, it becomes possible
to integrate descriptions in all three domains within a
single formalism.

A programmer's use of a higher level system will be
highly interactive. Since the understanding of a compo-
nent comes from having multiple viewpoints, no single
organization of the information on a printed page will

397

be adequate. The programmer needs to be able to reor-
ganize the information dynamically, looking from one
view and then another, going from great generality down
to specific detail, and maneuvering around in the space
of descriptions to view the interconnections. This will
require an interface that is more sophisticated than the
question-answering interfaces now used on artificial in-
telligence knowledge bases. It seems likely that pictorial
representations, interactive graphics, and "intelligent
summarizing" will play a large role. Some current soft-
ware development techniques (such as the Structured
Analysis Design Technique [18]) emphasize the impor-
tance of multiple viewpoints of analysis in documenta-
tion and design.

Of course, there always remains the task of providing
a description of each component that is detailed enough
to allow the system to run it. This will be part of
providing a broader description, and may be done in
stages. A very abstract specification of what a component
does will be sufficient for a kind of "high level debug-
ging" in which its interactions with other components
can be analyzed and described without carrying out the
steps at the lowest level. There is a whole range of
operations that are now thought of as "automatic pro-
gramming," which will enable the programmer to let the
system fill in details once the overall behavior of the
component has been specified. Some of these will be
based on standardized defaults, others on automated
analysis of performance characteristics. It will be all
based on the availability of descriptions in the imple-
mentation domain of the various machines and subsys-
tems being used.

As systems become more complex, the level of desir-
able invisibility will rise. Current high level program-
ming languages do not give the user the opportunity to
decide just how the hardware registers of the machine
will be used to store variables, since there is much more
to be gained by a uniform integrated approach to their
use by the compiler. Similarly, much of what we now
think of as data structure and algorithm specification
will be handled by programs that can take into account
much more complex efficiency considerations than are
practical for a human programmer.

In summary, a programmer will use a programming
system that contains a base of knowledge about the
system he or she is working on, and of other potential
components and concepts of programming that might be
of use. The programmer will modify the descriptions of
previously described components, and create high level
descriptions of new ones to be added. These modifica-
tions and additions may be from the viewpoints of all of
the different domains, and will be carried out in coop-
eration with the system, which checks for consistency,
for consequences of new information, etc. Checking and
debugging will be done at a variety of levels as the
description becomes more detailed. The programming
system will attempt to fill in details that are needed to
completely specify the implementation, so the working

Communications July 1979
of Volume 22
the ACM Number 7

system as a whole can be run. The debugging process
will make use of sophisticated reasoning processes that
can use all of the different domains of description in
analyzing and reporting what is happening.

which increase the mathematical tractability of the de-
scriptions.

Wulf [4] describes the motivations for the program-
ming language Alphard in similar terms:

What Needs to Be Done

The notion of higher level programming systems is
not new. Integrated programming environments have
been one of the major areas of development in Lisp
systems [56], and one of the major reasons for the DoD
common language effort [3] is to encourage the devel-
opment of programming tools which are too complex
and costly to be justified in a single project, or even a
single specialized language. These systems, however,
have evolved within the standard view of programming,
and although they contain many useful ideas, they are
far from achieving the goals discussed above. We need
further research in three distinct but interrelated areas:
the development of an effective descriptive calculus; the
creation of a body of descriptive concepts for computa-
tional processes; and the building of a complex integrated
system which uses them.

A Descriptive Calculus
The main thrust of these ideas depends on the ability

to create and manipulate descriptions in an effective,
understandable way. There are existing formalisms for
description (for example, the predicate calculus) which
are clear and well-understood, but lack the richness
typical in descriptions which people find useful. They
can serve as a universal basis for description but only in
the same sense that a Turing machine can express any
computation. They lack the higher level structuring
which makes it possible to manipulate descriptions at an
appropriate level of detail. As Dijkstra [2, p.5] observes:

That the first-order predicate calculus was the most suitable
candidate for the characterization of machine states was assumed
right at the start; early experiences, however, were not too encour-
aging, because it only seemed practicable in the simplest cases, and
we discovered the second consequence: the large number of variables
combined with the likely irregularity of the subsets to be character-
ized very quickly made most of the formal expressions to be manip-
ulated unmanageably long.

The requirements for a descriptive language of the
kind I propose are quite different from those used in the
mathematical foundations of computation or program
verification. Work in these areas (see, for example the
collection of papers in [22]) emphasizes the use of de-
scriptive languages in rigorous proofs of the properties
of programs. A higher level programming system must
instead emphasize the use of descriptive languages for
communication. The concentration must be on those
aspects which aid in giving a person a clear overall
understanding (at variable levels of detail and from
multiple points of view), rather than on those aspects

The "software crisis" is the result of our human limitations in
dealing with complexity. To "solve" the problem we must reduce
the "apparent complexity" of programs, and this reduction must
occur in the program text We know something about the way
humans have traditionally dealt with understanding complex prob-
lems.., and we can try to mold the expression of a program so that
it facilitates these techniques.

If we look at the ways in which people have "tradi-
tionally dealt with understanding complex problems,"
we find many features of natural language which serve
to reduce complexity by allowing imprecision when pre-
cision is not required. This is not an excuse for avoiding
all precision, or a justification for "natural language
programming." We need to understand the deep psycho-
logical properties of how people understand language,
not mimic its superficial forms. The justification is not
that natural language is "better" in some abstract sense,
but that it is what we as people know how to use. As
discussed above, the most essential feature of a program-
ming formalism is its understandability by programmers.
We cannot turn programmers into native speakers of
abstract mathematics, but we can turn our programming
formalisms in the direction of natural descriptive forms.

There are artificial intelligence formalisms (such as
semantic networks [8, 10, 14, and 15] and KR L [6, 7])
with increased dimensions of expressiveness, but these
are not yet at a level of precision which would make
them sufficiently understandable to be used in a system
of the required complexity. The characteristics which
they explore (and which will need to be part of a
formalism to be used in a higher level programming
system) include:

Prototype hierarchies. The nouns and verbs of a nat-
ural language can be organized into hierarchies (or tax-
onomies) which capture much of the logical structure of
what they describe. We know that a dog is an animal,
and the answers to questions about dogs will often be
derived through general properties of animals. Systems
such as semantic networks treat these deductions spe-
cially, rather than dealing with them uniformly as a set
of universally quantified implications. This leads to
greater efficiency for the common calculations, and pro-
vides a structure which makes it much easier for a
programmer to organize a knowledge base. These hier-
archies contain information which could be thought of
as a set of independent facts, but has additional structure
in the same sense that a structured program structures a
set of steps and jumps.

The centrality of defaults. Most logical calculi are
optimized for handling generalizations which are either
true or false. They do not provide means for stating
generalizations that are not completely universal, but are
"usual" or "normal" or "expected." In natural descrip-

398 Communications July 1979
of Volume 22
the ACM Number 7

tions of any kind, people draw heavily on the ability to
use information of a less formal sort and a kind ofceteris
paribus reasoning in which a standard fact is assumed
true unless there is an explicit reason to believe the
contrary. One of the major directions in artificial intel-
ligence representation research is the attempt to provide
this capability in a formally clear system. The notion of
a default value is familiar to every programmer, but its
place in a formal calculus needs to be carefully worked
out.

The suppression of exceptional details. One of the
major reasons for using precise formalizations is that
they make everything explicit. For some purposes this is
good, but there are times when understanding can come
only through the suppression of detail. If we are trying
to formally describe a program which normally involves
simple input-output behavior (e.g. one that copies data
from one place to another), we want to describe its
behavior in a way which highlights that simplicity. If
there are exceptional cases (e.g. when the storage allo-
cator fails to find a sufficient block), these need to be
described, but in a secondary place. This basic descrip-
tion of an object cannot be cluttered up with all of the
details needed for handling the contingencies. Formal-
isms used in denotational semantics for programs dem-
onstrate this problem well. In order to deal with a special
escape at all, they demand that even the simplest pro-
grams be described as operating on continuations, envi-
ronments, etc., and this description permeates every level
of what is said.

Multiple levels of abstractions and instances. In dealing
with programs and processes, we run into complexities
involving the instantiation of general classes. For exam-
ple, a specific algorithm (such as Euclid's algorithm) can
be thought of as an instance of a general class (numerical
algorithms), or as a class whose instances are programs
implementing the algorithm. Each of those programs is
in turn both an instance (of the class of formal objects
known as programs) and a description of a class of
process instances, each of which is carrying it out. If we
look at the finer structure of programs, such as the
instantiation of variables or pieces of code within loops
similar phenomena arise. Higher order and typed logics
deal in certain ways with the notion of a class (predicate)
which is also an instance, but their austerity makes them
inadequate for capturing the rich set of ways in which
people interleave levels of abstraction. Artificial intelli-
gence formalisms have not yet dealt adequately with
these issues, which are currently a topic of active inves-
tigation.

A Basis for Describing Processes
Given a formalism for descriptions in general, we

need prototypes for describing those things which are
common to all of our programs (e.g. processes, programs,
data structures, communication acts). This is a necessary
kind of library, just as a library of standard data struc-

399

tures and statistical routines is a necessary part of a
system for statistical manipulations. It need not be fixed
once and for all, but a good deal of it must be in place
before the system is usable, and it must be held relatively
uniform if the system is to be extendable.

The domain which I believe is currently ripest for
exploration is the description of processes. Traditional
mathematics provides us with a broad variety of concepts
for what I have called "result specifications," and they
are being applied to programming (for example, [19]). In
describing processes, we are on shakier ground. There
are many promising ideas floating around that need to
be captured in a more precise form. The success of higher
level programming systems will depend on having a
coherent body of descriptive categories which can cap-
ture a variety of modes for process description. There is
a beginning of comprehensive work in this area, such as
the development of the Delta language for system de-
scription [20], but most of the work so far has dealt with
one or another aspect in isolation.

Modularity and structured procedures. There has been
a good deal of attention in recent years to the higher
level structure of control constructs. In addition, lan-
guages based on data abstractions (such as CLU [36],
Alphard [38], and Mesa [33, 34]) provide for larger
modules which encapsulate collections of data structures
and procedures. Beginning from a different point of
view, structured system description languages [18, 20]
provide conceptual tools for describing the overall struc-
ture of large systems. We need a consistent way of talking
about modularization and interaction between semi-in-
dependent modules which can be applied to system
structure at all different levels of detail.

Structured data objects. Work on programming lan-
guage constructs often emphasizes the structure of the
sequence of operations, in terms of loops, recursive calls,
etc. [19]. A related notion in describing processes is the
ability to hide detail by allowing the combination of
objects into a larger "structured object," and to define
unitary operations on this higher level object which
invoke collections of operations on the components. This
has been explored for simple mathematical objects (e.g.
lists in Lisp's MAP functions [55], vectors and arrays in
APL [25], sets in SETL [30] and VERS [24]), and seems
applicable to more specialized semantic objects (in all of
the three domains) as well. In many cases, much of what
is now thought of as control structure can be implicit in
the data structure, leading to notions of"nonprocedural"
or "procedureless" languages [26, 28]. The interaction
between control and data structure needs to be put into
a theoretical framework.

Program factoring--objects and procedures. In view-
ing a process as a structured sequence of individual steps,
there are different ways to think about what each of
those steps is. Most programming languages lead the
programmer to think in terms of operations (either prim-
itive or programmer-defined) to be carried out on argu-
ments. Some (such as Simula [311, Smalltalk [35], and

Communications July 1979
of Volume 22
the ACM Number 7

Plasma [51]) think of typed objects which receive and
interpret messages. Instead of organizing code around a
single procedure (e.g. print or plus) which selects its
action according to data type, they define classes (such
as integer, list, etc), which select what to do on the basis
of the message. Artificial intelligence languages take a
more general approach in using pattern directed invoca-
tion [5, 32]. Each step specifies a pattern (or goal) to be
achieved. A database of pattern-action pairs is accessed
to decide what steps to carry out: Each of these view-
points is best for some aspects of programming, and we
need to understand how to integrate them into a larger
framework.

States and transitions. There are two complementary
ways of looking at a computational process~as a se-
quence of operations or a sequence:of states. This duality
has been exploited in the mathematical theory of com-
putation, but has not really been integrated into pro-
gramming languages. Transition nets and Petri nets [42,
44] are state-oriented, rather than operation-oriented.
Production systems [47] are state-oriented, with each
production specifying a partial state description and an
appropriate transition function (not the name of the new
state, but a set of operations which produce the new
state). Languages which provide ways of specifying ac-
tions to be taken on special conditions [41] are really
mixing state-transition description with the normal op-
eration sequence. As with the operation/object distinc-
t ionabove, the goal is to find a synthesis which allows a
process to be described using a mixture of the conceptual
viewpoints, and to be run on the basis of that description.

Interacting processes and communication. The notions
above deal primarily with a single process. The most
significant direction in computing over the coming years
will be towards multiple processes, both virtual (e.g.
organizing a speech system as a series of separate proc-
esses, even if it runs on a single PDP-t0 [49, 54]) and
actual (e.g. networks of computers cooperating on a
single task). There are a number of issues which have
been dealt with by system designers at lower levels (like
operating systems) which have not found their way into
higher level languages. There is also a wealth of meta-
phor provided by thinking of a computation as being
carried on by a collection of independent individuals
who must communicate by exchanging messages in a
common language. We can draw many analogies from
human communication. What language do they talk?
Which subsystems need to be multilingual? What are the
discourse rules for establishing and controlling message
flow? Is it possible to learn a second language? How can
two processes make use of shared knowledge to increase
thc efficiency of communication? How can one process
make use of an internal model of another process in
order to facilitate communication and cooperation?
Some of these issues are being explored in the multipro-
cessor programming language PLITS [50] and are the
basis for theoretical formalisms such as that of Hoare
[521.

A Complex System
The kind of higher level programming system dis-

cussed in this paper is itself a massive and complex
system. Its subject matter is not an external one, like
room-scheduling, but the reflective one-- the subject of
programming. Much of the other work mentioned in this
paper provides a starting point. Integrated programming
systems, languages based on data abstraction, and rep-
resentation languages are examples of work which can
be incorporated. It is unlikely that a "crash program" to
produce a unified higher level programming system
would succeed today. There will have to be a careful
program of bootstrapping to get from today's languages
and systems to the one I have described. The reason for
writing a paper of this sort (rather than setting out to
build a system) is the recognition that the relevant ideas
need more development, and the hope that people will
turn their attention to them.

Acknowledgments. In a paper of this kind, it is im-
possible to properly credit the sources of the ideas. It
grew out of ongoing interactions with people who hold
similar ideas in different forms, and it is really just an
expression of the current state of my intellectual envi-
ronment. My joint work with Danny Bobrow and Brian
Smith on the theoretical foundations of KRL has been
a primary source of ideas, and the rest of the Stanford/
Xerox KRL research group (David Levy, Mitch Model,
Richard Fikes, Don Norman, and Henry Thompson)
have been involved in all stages of our thinking. Stanford
computer science students in the CS365 seminar in 1977
pushed and probed on many of the ideas about proce-
dures, which in turn came from the authors of the papers
we read there (included in the list of references). The
Xerox PARC environment has been a context in which
the problems of "programming in the large" are well-
understood, and has provided a wealth of ideas and
examples, including the work of Alan Kay and his group
on Smalltalk, the implementation of the Mesa program-
ming language, the development of programming envi-
ronments by Warren Teitelman and Larry Masinter, Bob
Sproull's understanding of graphics systems and proto-
cols, and Peter Deutsch's views on system organization
and programming environments. In addition, the cyber-
netic notions of Humberto Maturana as introduced to
me by Fernando Flores have led to subtle but very
important shifts of perspective in the way I look at
systems of all kinds. I am also grateful to Alan Perlis,
Peter Deutsch, Jim Homing, and the referees for exten-
sive and insightful comments on earlier drafts of this
paper.

Received January 1979; revised March 1979

References

The programming of complex systems
!. Belady, L.A. Large software systems. Res. Rep. RC 6966
(#29862), IBM Thomas J. Watson Res. Ctr., Yorktown Heights,
N.Y., Jan. 1978.

400 Communications July 1979
of Volume 22
the ACM Number 7

2. Dijkstra, E.W. On the interplay between mathematics and
programming. Unpublished lecture, EWD641, 1977.
3. Fisher, D.A. DoD's common programming language effort.
Computer (March 1978), 25-33.
4. Wulf, W.A. Some thoughts on the next generation of
programming languages. In Perspectives on Computer Science, A.K.
Jones, Ed., New York, Academic Press, 1977.

Representation formalisms
5. Bobrow, D., and Raphael, B. New programming languages for
AI research, Computing Surveys 6, 3 (Sept. 1974), 153-174.
6. Bobrow, D., and Winograd, T. An overview of KRL, a
knowledge representation language, Cognitive Science 1, 1 (Jan.
1977), 3-46.
7. Bobrow, D., Winograd, T., and the KRL research group.
ExperienCe with KRL-0: One cycle of a knowledge representation
language, Fifth Int. Joint Conf. on Artif. Intell., pp. 223-227.
8. Brachman, R. What's in a concept: Structural foundations for
semantic networks, Int. J. Man-Machine Studies 9 (Sept. 1977), 127-
152.
9. Davis, R. Knowledge about representations as a basis for system
construction and maintenance. In Pattern Directed Inference Systems,
D.A. Waterman, Ed., Academic Press, New York, 1978.
10. Fikes R., and Hendrix, G. A network-based knowledge
representation and its natural deduction system. Fifth Int. Joint Conf.
on Artif. lntell., pp. 235-246.
11. Goldstein I., and Roberts, B. Nudge, a knowledge-based
scheduling program. MIT AI-Memo 405, M.I.T., Cambridge, Mass.,
Feb. 1977.
12. Hayes, P. Some problems and non-problems in representation
theory. AISB Conf. 1974, pp. 63-79.
13. Hayes, P. In Defense of Logic. Fifth Int. Joint Conf. on Artif.
Intell., pp. 559-565.
14. Levesque, H. A procedural approach to semantic networks. TR-
105 Dept. of Comptr. Sci., U. of Toronto, Canada, 1977.
15. Woods, B. What's in a link? In Representation and Understanding,
Bobrow and Collins, Eds., 1975.

Formalisms for specifying programs and describing systems
16. Ashcroft, E.A., and Wadge, W.W. Lucid, a non-procedural
language with iteration. Comm. A CM 20, 7 (July 1977), 519-526.
17. Burstall, R.M., and Goguen, J.A. Putting specifications together.
Fifth Int. Joint Conf. on Artif. Intell., 1977.
18. Dickover, M.E., McGowan, C.L., and Ross, D.T. Software design
using SADT. Proc. 1977 ACM Nat. Conf., Seattle, pp. 125-133.
19. Dijkstra, E.W. A Discipline of Programming. Prentice Hall,
Englewood Cliffs, New Jersey, 1976.
20. Holback-Hanssen, E., Handlykken, P., and Nygaard, K. System
description and the delta language. Delta Proj. Rep. #4, Norwegian
Comptg. Ctr. Pub. #523, Oslo, Sept. 1975.
21. Knuth, D. The Art of Computer Programming. Vol. 1,
Fundamental Algorithms. Addison-Wesley, Reading, Mass., 1968.
22. Neuhold E.J., Ed. Formal Description of Programming
Languages. North-Holland Pub. Co., Amsterdam, 1978.
23. Tennent, R.D. The denotational semantics of programming
languages. Comm. ACM 19, 8 (Aug. 1976), 437-453.

Structured objects and structured procedures
24. Earley, J. High level operations in automatic programming.
SIGPLAN Notices 9, 4 (1974), pp. 34-42.
25. Falkoff, A.D., and Iverson, K.E. The design of APL. IBM J. Res
Develop. (1973), 324--334.
26. Goldsmith, C. The design of a procedureless programming
language. SIGPLAN Notices 9, 4 (1974), pp. 13-24.
27. Kowalski, R. Predicate calculus as a programming language.
Information Processing 75, North-Holland Pub. Co., Amsterdam,
1975.
28. Leavenworth, B. and Sammet, J. An overview of nonprocedural
languages. SIGPLAN Notices 9, 4 (1974), pp. 1-12.
29. Reynolds, J. GEDANKEN--A simple typeless language based
on the principles of completeness and the reference concept. Comm.
ACM 13, 5 (May 1970), 308-319.
30. Schwartz, J. On programming: An interim report on the SETL
project. Installment I: Generalities. N.Y.U. Courant Inst., New York,
Feb. 1973.

Program factoring--modules, objects, and procedures
31. Birtwistle, Dahl, Myhrhaug, and Nygaard. SIMULA BEGIN,
Auerbach, Philadelphia, Pa., 1973.
32. Davis, R. Generalized procedure calling and content directed
invocation. Proc. ACM Conf. on AI and Programming Languages,
Aug. 1977.
33. Geschke, C.M., Morris Jr., J.H., Satterthwaite, E.H. Early
experience with Mesa. Comm. ACM 20, 8 (Aug. 1977), 540-552.
34. Geschke, C.M., and Mitchell, J.G. On the problem of uniform
references to data structures. IEEE Trans. on Software Eng. (June
1975), 207-219.
35. lngalls, Dan. The Smalltalk-76 programming system: Design and
implementation. Conf. Rec. of the Fifth Annual ACM Symp. on
Principles of Programming Languages, Tucson, Arizona, Jan. 1978.
pp. 9-16.
36. Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C.
Abstraction mechanisms in CLU. Comm. A.CM 20, 8 (Aug. 1977),
564-576.
37. Pratt, V. The competence/performance dichotomy in
programming. Fourth ACM Symp. on the Principles of Programming
Languages, 1977, pp. 194-200.
38. Shaw, M., Wulf, W.A., and London, R.L. Abstraction and
verification in Alphard: Defining and specifying iteration and
generators. Comm. ACM 20, 8 (Aug. 1977), 553-562.
39. Steele, G. LAMBDA, the ultimate imperative. MIT-AI Memo
353, M.I.T., Cambridge, Mass., March 1976.
40. Steele, G. LAMBDA, the ultimate declarative. MIT-AI Memo
379, M.I.T., Cambridge, Mass., Nov. 1976.

States and transitions
41. Goodenough, J. Exception handling: issues and a proposed
notation. Comm. ACM 18, 12 (Dec. 1975), 683-696.
42. Holt, A. Introduction to occurrence systems. In Associative
Information Techniques, Jacks, Ed., Elsevier, 1971, pp. 175-203.
43. Humby, E. Programs from Decision Tables. McDonald/Elsevier,
1973.
44. Lauer, P.E., and Campbell, R.H. A description of path
expressions by Petri nets. Second ACM Symp. on Principles of
Programming Languages, 1975, pp. 95-105.
45. Morgan, H.L. Event sequenced programming. Tech. Rep. 119
Dept. of Operations Research, Cornell U., Ithaca, N.Y., July 1970.
46. Reiger, C. The commonsense algorithm as a basis for computer
models of human memory, inference, belief and contextual language
comprehension. In Theoretical Issues in Natural Language Processing,
Shank and Nash-Webber, Eds., 1976, pp. 180-195.
47. Rychener, M. Production systems: A case for simplicity in AI
control structures. Draft of paper submitted to ACM 1977 Nat. Conf.
48. Sacerdoti, E. The non-linear nature of plans. Fourth Int. Joint
Conf. on Artif. lntell., pp. 206-214.

Interacting processes and communication
49. Barnett, J. Module linkage and communication in large systems.
In Speech Recognition, D.R. Reddy, Ed., pp. 500-520.
50. Feldman, J.A. High level programming for distributed
computing. Comm. ACM 22, 6 (June 1979), 353-368.
51. Hewitt, C., and Smith, B. Towards a programming apprentice.
1EEE Trans. Software Eng. SE-1 (March 1976), 26-45.
52. Hoare, C.A.R. Communicating sequential processes. Comm.
ACM. 21, 8 (Aug. 1978), 666-677.
53. Lampson, Mitchell, and Satterthwaite. On the transfer of control
between processes. Proc. of Programming Symposium, Paris, April
1974; Lecture Notes in Computer Science 19, Springer-Verlag, 1974,
pp. 181-203.
54. Lesser, V. Parallel procesing in speech understanding systems: A
survey of design problems. In Speech Recognition, D.R. Reddy, Ed.,
1975, pp. 481-499.

Lisp
55. Levin, M., et al. The Lisp 1.5 Programmer's Manual, M.I.T.,
Cambridge, Mass. 1965.
56. Sandewall, E. Programming in an interactive environment: The
"Lisp" experience. Computing Surveys 10, 1 (March 1978), 35-71.
57. Teitelman, W. A display oriented programmer's assistant. Fifth
Int. Joint Conf. on Artif. Intell., 1977, pp. 905-915.
58. Teitelman, W., et al. Interlisp Reference Manual-Xerox PARC,
1978.

401 Communications July 1979
of Volume 22
the ACM Number 7

