
Reports and Articles 

Beyond Programming Languages 
Terry Winograd 
Stanford University 

As computer technology matures, our growing 
ability to create large systems is leading to basic 
changes in the nature of programming. Current 
programming language concepts will not be adequate 
for building and maintaining systems of the complexity 
called for by the tasks we attempt. Just as high level 
languages enabled the programmer to escape from the 
intricacies of a machine's order code, higher level 
programming systems can provide the means to 
understand and manipulate complex systems and 
components. In order to develop such systems, we need 
to shift our attention away from the detailed 
specification of algorithms, towards the description of 
the properties of the packages and objects with which 
we build. This paper analyzes some of the shortcomings 
of programming languages as they now exist, and lays 
out some possible directions for future research. 
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Introduction 

Computer programming today is in a state of crisis 
(or, more optimistically, a state of creative ferment). 
There is a growing recognition that the available pro- 
gramming languages are not adequate for building com- 
puter systems. Of course, as any first year student of 
computation theory knows, they are logically sufficient. 
But they do not deal adequately with the problems we 
face in the day-to-day work of programming. We become 
swamped by the complexity of large systems, lost in code 
written by others, and mystified by the behavior of our 
almost debugged systems. When we look to the inte- 
grated multiprocessor systems that will soon dominate 
computing, the situation is even worse. 

This crisis in software production is far greater (in 
overall magnitude at least) than the situation of the early 
50's that led to the development of high level languages 
to relieve the burden of coding. The problems are harder 
to solve, and the costs of not solving them are in the 
hundreds of millions. "The symptoms appear in the form 
of software that is nonresponsive to user needs, unrelia- 
ble, excessively expensive, untimely, inflexible, difficult 
to maintain, and not reusable." [3, p. 26.] There are 
many ways to improve things a little, and they are being 
tried. But to achieve a fundamental jump in our pro- 
gramming capacity, we need to rethink what we are 
doing from the beginning. 

The Problem 
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I believe that the problem lies in an obsolete view of 
programming and programming languages. A widely 
accepted view can be paraphrased: The programmer's 
job is to design an algorithm (or a class of computations) 
for carrying out a task, and to write it down as a complete 
and precise set of instructions for a computer to follow. 
High level programming languages simplify the writing 
of these instructions by providing basic building blocks 
for stating instructions (both control and data structures) 
that are at a higher level of the logical structure of the 
algorithm than those of the basic machine. 
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This view has guided the development of many pro- 
gramming languages and systems. It served well in the 
early days of computing, but in today's computational 
environment, it is misleading and stultifying. It focuses 
attention on the wrong issues and gives the most impor- 
tant aspects of programming a second-class status. It is 
irrelevant in the same sense that binary arithmetic is 
irrelevant--the things it deals with are a necessary part 
of computing, but should play a subsidiary rather than 
central role in our understanding. 

As computer technology (for both software and hard- 
ware) matures, our growing ability to create complex 
systems has led to three basic changes in the nature of 
programming: 

1. Computers are not primarily used for  solving well-struc- 
tured mathematical problems or data processing, but in- 
stead are components in complex systems. 

According to Department of  Defense studies [3], 
more than half of DoD software costs are associated with 
"embedded computer systems." An embedded computer 
system is "one that is logically incorporated in a larger 
system--e.g, an electromechanical device, a tactical sys- 
tem, a ship, an aircraft, or a communications system-- 
whose primary function is not computation." Of course, 
embedded computer systems are not unique to the DoD. 
Many computer scientists spend the majority of  their 
time dealing with embedded computer systems such as 
message systems and text editing and formatting systems. 
The example discussed below is a large embedded system 
in a university context. As the microcomputer revolution 
continues, this change will become even more extreme. 
There will be computers embedded in every conceivable 
kind of electrical and mechanical system, and applica- 
tions like text editing and message processing will be- 
come widespread on the scale of today's telephone net- 
work. As Fisher [3] notes: 

Embedded computer software often exhibits characteristics that 
are strikingly different from those of  other computer applications . . . .  
Many embedded computer applications require software that will 
continue to operate in the presence of  faults . . . .  For example, the 
applications may require the monitoring of  sensors, control o f  equip- 
ment  display, or operator input processing. They must interface 
special peripheral equipment . . . .  Software must sometimes be able 
to respond at periodic (real time) intervals, to service interrupts 
within limited times, and to predict computation times . . . .  In many 
applications. . ,  it is necessary to access, manipulate and display large 
quantities o f  data. Much of  this data is symbolic or textual rather 
than numeric, and must be organized in an orderly and accessible 
fashion. 

2. The building blocks out of  which systems are built are 
not at the level of programming language constructs. They 
are "'subsystems" or "'packages," each of  which is an 
integrated collection of  data structures, programs, and 
protocols. 

By making use of existing modules, a programmer 
can deal with design at a higher level, creating an inte- 
grated system with capacities far greater than a program 
that could be built with the same effort "from scratch." 
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Components for general tasks (such as memory manage- 
ment, user interface, file management, and network com- 
munication) can be designed once, rather than recon- 
structed for each system that needs the capability. Un- 
fortunately, in current programming practice this is more 
of an ideal than a reality. The difficulties of using existing 
packages often make it easier to replicate their function 
than to integrate them into a system. The only way such 
packages are generally used is by building programs 
within an "operating system" that provides facilities 
within a uniform environment. Only those packages that 
are needed by the majority of users find their way into 
operating systems, and the facilities for using them are 
complex and ad hoc relative to modern programming 
languages. We need better ways to deal with the prob- 
lems of "programming in the large." 

As noted in an IBM report on large software systems 
[1, p. 6], " . . .  The understanding of how programs work 
individually and in cooperation with each other. . ,  re- 
mains very difficult to generalize, teach, communicate, 
or even preserve, due to lack of easy 'externalization,' 
i.e. representation, of ideas." Once we begin to deal with 
networks of processors, it will become even more impor- 
tant to deal explicity with properties of systems which 
integrate many independent components. 

3. The main activity of  programming is not the origination 
o f  new independent programs, but in the integration, mod- 
ification, and explanation of  existing ones. 

This third change grows from the first two. As we are 
able to build more complex programs, we develop sys- 
tems that grow to fit an environment of  needs, rather 
than carrying out a single well-specified task. An embed- 
ded system (such as one for airline reservations or text 
preparation and formatting) evolves over many years, 
increasingly fitting the needs of those who use it, and 
incorporating new capacities as hardware advances make 
them practical. The DoD study [3, pp. 24-25] noted that, 
"The programs are frequently large (50,000 to 100,000 
lines of code) and long-lived (10 to 15 years) . . . .  Change 
is continuous because of evolving system requirements-- 
annual revisions are often of the same magnitude as the 
original development . . . .  The majority of costs are in- 
curred in software maintenance rather than develop- 
ment." 

As additional needs and possibilities arise, it should 
be possible to modify and combine existing well-tested 
systems rather than build new ones. In most cases, the 
needs for continuity in the use of the system (including 
"upward compatibility" for existing data and user pro- 
grams) make it impractical to start from scratch. Using 
current programming techniques, systems often reach a 
point at which the accretion of changes makes their 
structure so baroque and opaque that further changes 
are impossible, and the performance of the system is 
irreversibly degraded. The situation is further compli- 
cated by the fact that modifications are often done not 
by the original builders, but by new programmers with 
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an incomplete or inaccurate understanding of the system. 
As Wulf  [4] points out, "Another component of the 
software crises is less commonly recognized, but, in fact, 
is often more costly.., namely, the extreme difficulty 
encountered in attempting to modify an existing pro- 
gram . . . .  The cost of such evolution is almost never 
measured, but, in at least one case, it exceeded the 
original development cost by a factor of 100." 

The difficulties in building and modifying large sys- 
tems have long been recognized and lamented. They 
have led to various schools of "structured programming" 
and to the emphasis on restriction and discipline in the 
design and use of programming languages. There is a 
large body of  lore shared by practicing programmers, 
providing ways to recognize the problems and guidelines 
for avoiding the most obvious of them. These include 
bodies of standards and conventions designed to avoid 
misunderstanding and miscommunication. But ulti- 
mately the solution lies not in greater discipline but in 
more adequate tools. 

Towards a Solution 

Just as high level languages enabled the programmer 
to escape from the intricacies of  a machine's order code, 
higher level programming systems can provide help in 
understanding and manipulating complex systems and 
components. We need to shift our attention away from 
the detailed specification of algorithms, towards the de- 
scription of the properties of the packages and objects 
with which we build. A new generation of programming 
tools will be based on the attitude that what we say in a 
programming system should be primarily declarative, not 
imperative: The fundamental use of a programming sys- 
tem is not in creating sequences of instructions for accom- 
plishing tasks (or carrying out algorithms), but in ex- 
pressing and manipulating descriptions of computational 
processes and the objects on which they are carried out. 

To some extent, this attitude coincides with current 
work on specification languages, structured program- 
ming formalisms, and denotational theories of program- 
ming semantics. All of these emphasize the description 
of the results of computations, rather than instructions 
for carrying them out. Dijkstra [19], for example, de- 
scribes a methodology for understanding programs in 
terms of predicate transformers from an initial to final 
state. A predicate transformer is "a rule telling us how to 
derive for any post-condition R the corresponding weak- 
est precondition.., for the initial state such that the 
attempted activation will lead to a properly terminating 
activity that leaves the system in a final state satisfying 
R." He argues that "a program written in a well-defined 
programming language can be regarded as a mechanism 
that we know sufficiently well, provided we know the 
corresponding predicate transformer." Languages such 
as Lucid [16] carry this philosophy directly into the 
programming formalism. Lucid is a strictly denotational 
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language, and the statements of a Lucid program can be 
interpreted as true mathematical assertions about the 
results and effects of the program. 

There is a critical difference, though, which is lost if 
we look only at the distinction between imperative and 
declarative. In stating that a programming system helps 
us to manipulate "descriptions of computational proc- 
esses," we are saying something quite different from 
"assertions about the results and effects." In order to 
clarify this, it is useful to distinguish three types of 
specification: 

(1) Program specification. A formal structure which can 
be interpreted as a set of instructions for a given 
machine. This is the imperative style of traditional 
programming languages. 

(2) Result specification. A process-independent specifi- 
cation of the relationships between the inputs (or 
initial state), internal variables, and outputs (or 
resulting state) of the program. This is the specifi- 
cation style advocated by Dijkstra and in work on 
program verification and transformation. 

(3) Behavior specification. A fbrmal description of the 
time-course of activity of a machine. Any such 
description selects certain features of the machine 
state and action (e.g. input and output activities, 
use of memory resources, communication events 
among processes), without specifying in full detail 
the mechanisms which generate these. 

A behavior specification is like a result specification 
in that it characterizes what will be done, rather than 
giving commands for how to do it. It is different in that 
it is explicitly concerned with issues of sequence, and 
potentially with real-time measures as well. In practice, 
result specifications for systems of significant size factor 
the specification, often using sequence as a dimension of 
factorization. In a behavior specification, the time-course 
description is an essential part of the description of what 
the system as a whole does, not a convenience for 
factoring it into result-producing modules. 

Programming in the future will depend more and 
more on specifying behavior. The systems we build will 
carry out real-time interactions with users, other com- 
puters, and physical systems (e.g. for process control). In 
understanding the interaction among independent com- 
ponents, we will be concerned with detailed aspects of 
their temporal behavior. The machine must be.thought 
of as a mechanism with which we interact, not a math- 
ematical abstraction which can be fully characterized in 
terms of  its results. 

Current languages provide only scattered specialized 
mechanisms for description of either results or process. 
Declarations are a ubiquitous form of low level descrip- 
tion, and assertions about the state of a computation are 
occasionally included. But if we look at what a program- 
mer would say about a program to a colleague who 
wanted to work on it or use it, very little of the description 
appears anywhere in the "code." If  (either because of 
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idealism or coercion) the programmer has included com- 
ments, they can provide useful but local description. If  
further (almost always through coercion) the program 
has been documented, there may be more global descrip- 
tions. In large systems, documentation will include a 
careful specification of protocols and conventions not 
belonging to any one program, but vital to the system as 
a whole. It may also include process descriptions along 
with the result descriptions. But these various pieces of 
description are scattered, and for the most part not 
accessible in any systematic fashion. 

I want to turn the situation on its head. The main 
goal of a programming system should be to provide a 
uniform framework for the information that now appears 
(if at all) in the declarations, assertions, and documen- 
tation. The detailed specification of executable instruc- 
tions is a secondary activity, and the language should not 
be distorted to emphasize it. The system should provide 
a set of tools of  generating, manipulating, and integrating 
descriptions of  both results and processes. The activity 
that we think of as "writing a program" is only one part 
of the overall activity that the system must support, and 
emphasis should be given to understanding rather than 
creating programs. 

The rest of this paper explores some of the conse- 
quences of this view, and makes some suggestions as to 
what a higher level programming system might look like. 
It is an attempt to lay out the problems, not to solve 
them. It will take many years of research before these 
speculations can be backed up with concrete evidence. 

A Motivating Example 

One of the best ways to understand a general view of 
computing is to look at the examples used by those who 
hold it. Both Knuth's opus, The Art of Computer Pro- 
gramming [21], and Dijkstra's A Discipline of Program- 
ming [19] begin by discussing the Euclidean algorithm. 
In a clear and simple way it exemplifies the basic notions 
of algorithm and program as a mathematical abstraction. 
The Lisp 1.5 Manual [55] includes the Lisp interpreter 
written in Lisp, illustrating the manipulation of symbolic 
structures and the ability to treat the programs them- 
selves as symbolic data. The view proposed in this paper 
is best illustrated by an example at a very different level. 

Imagine that you have come to work as a system 
designer and programmer for a large university. You are 
given the following system development task. 

The current situation. The univeristy administration 
has a computer system for scheduling and planning room 
use. Users at several sites on campus access the system 
through interactive graphics terminals that display build- 
ing floorplans as well as text and other graphic data. 
There is a minicomputer running each cluster of termi- 
nals, connected to the central campus facility by a com- 
munication network. Each cluster has a device capable 
of printing out floorplans and graphic data like that 
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displayed on the terminals. Large-scale data storage is at 
the central campus computer facility. 

The system keeps track of the scheduled use of all 
rooms, such as long-term lab and office assignments, 
regular class schedules, and special events. It is able to 
answer questions about current scheduled use and avail- 
ability. Querying is done from the terminals, through 
structured graphic interaction (menus, standardized 
forms, pointing, etc.) and a limited natural language 
interface. The system does not make complex abstract 
deductions, but can combine information in the database 
to answer questions like "Is there a conference room for 
40 people with a projection screen available near the 
education building from 3 to 5 on the 27th?" Users with 
appropriate authorization enter new information, includ- 
ing the scheduling of  room use and changes to the 
facilities (including the interactive drawing of  new or 
modified floorplans). In addition to the current assign- 
ments, the system keeps a history of  use for analysis. 
Standard statistical information and data representations 
(such as tables, bar charts, graphs, etc.) are produced on 
demand for use in long-range planning. 

Your assignment. The dean wants the system to pro- 
vide more help in making up the quarterly classroom 
assignments. It should be possible to give it a description 
of the courses scheduled for a future quarter and have it 
generate a proposed room assignment for all courses. In 
deciding on assignments, the system should consider 
factors such as expected enrollment (using past data and 
whatever new information is available on estimated en- 
rollments), the proximity of rooms to the departments 
and teachers involved, the preference for keeping the 
same location over time, and the nature of any special 
equipment needed. It should print out notices summariz- 
ing the relevant parts of the plan for each teacher, 
department, dean, and building supervisor. Any of these 
people should be able to use the normal querying system 
to find out more about the plan, including the motiva- 
tions for specific decisions. Properly authorized repre- 
sentatives of the dean's office should be able to request 
changes in the plan through an interactive dialog with 
the system in which alternatives can be proposed and 
compared. When a change is made, the system should 
readjust whatever is necessary and produce new notifi- 
cations for the people affected. 

A system like this is just at the edge of our program- 
ming powers today. It would take many programmer- 
years of effort to build and would be successful only if 
the project were managed extraordinarily well, even by 
the standards of the most advanced programming labo- 
ratories. But it is not hard because of the intrinsic diffi- 
culty of the tasks the system must carry out. It combines 
hardware and software facilities that have been demon- 
strated in various combinations a number of times. Even 
the question-answering and assignment-proposing com- 
ponents are within the bounds of techniques now consid- 
ered standard in artificial intelligence. 

The problem lies in the difficulties of organizing 
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complex systems. The integration of  all of  the compo- 
nents of the "initial system" would be a major achieve- 
ment, calling on our best design tools and methodologies. 
The idea that a new programmer could come in to such 
a system and make changes widespread enough to handle 
the "assignment" is enough to make an experienced 
programmer shudder. It would be hard enough to add 
new types of  questions (such as explanations for deci- 
sions), new information (such as distances and estimated 
enrollments), and new output forms (such as schedule 
summaries for departments). But even more, we are 
trying to integrate a new kind of  data (projected plans) 
into a system that was originally built to handle only a 
single current set of  room assignments and a record of  
their history. These projected plans must be integrated 
well enough for all of  the existing facilities (including 
floorplan drawing, question answering, statistics gather- 
ing, etc.) to operate on them just as they do with the 
initial database. 

Three Domains of Description 

A system of  this complexity can be viewed in each of  
three different "domains," subject, interaction, and imple- 
mentation. Each viewpoint is appropriate (and necessary) 
for understanding some aspects of  the system and inap- 
propriate for others. We will look at the example from 
each of  these viewpoints in turn, then discuss how they 
might be embodied in a programming system. 

The subject domain. This system, like every practical 
system, is about some subject. There is a world of  rooms 
and classes, times and schedules, that exists completely 
apart from the computer system that is understood as 
referring to them. The room or the course cannot be in 
the computer- -only  a pattern of  bits which we interpret 
as a description of it. One of  the primary tasks in 
programming is to develop a set of  descriptions that are 
adequate for talking about the objects being represented. 
There are descriptions for things we think of as objects 
(e.g. buildings, rooms, courses, departments) and also for 
processes (e.g. the scheduling of  events). These descrip- 
tions are relative to the goals of  the system as a whole 
and embody a basic view of  the problem. For example, 
what it takes to represent a room would be different for 
this system and for a system used by contractors in 
building construction. 

All too often the development of  descriptions in this 
domain is confused with the specification of  data struc- 
tures (which are in the domain of  implementation). In 
deciding whether we want a course to be associated with 
a single teacher, or to leave open the potential represen- 
tation of  team-teaching, we are not making a data struc- 
ture decision. The association of  a teacher (or teachers) 
with a course may be represented in many different data 
structures in many different components of  the system. 
One of  the most common problems in integrating systems 
is that the components are based on different decisions 
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in the subject domain, and therefore there is no effective 
way to translate the data structures. 

Current work on data structure abstraction [33, 34, 
36, and 38] is a step towards the systematic separation of  
subject domain decisions from their implementation. 
Representation languages in artificial intelligence pro- 
vide additional structure for stating the relationships 
among abstractions [5, 6, 9, and 10]. A programming 
system needs to provide a powerful set of  mechanisms 
for building up and maintaining "world views"--coher-  
ent sets of  description structures in the subject domain 
that are independent of  any implementation. Each com- 
ponent can then implement part or all of  this in a way 
that will be consistent with both the structure of  that 
component and the assumptions made in other compo- 
nents. 

A complex system like the one described above will 
need hundreds of  different categories of  objects. Some 
of  these (such as classrooms and courses) will be unique 
to the system. Others (such as times and dates, schedules, 
physical layouts) will be shared across a wide range of  
systems. They will be related into hierarchies of  abstrac- 
tion. We can think of  a seminar, a course, and a special 
lecture as examples of  a more general class of  event, all 
having a time, a place, etc. For some purposes, this is the 
right level of  generality. For other purposes, we need to 
distinguish carefully and use special information associ- 
ated with each. A major part of  building up systems will 
be the systematic development of  descriptions that pro- 
vide a uniform medium for describing objects and their 
interactions. 

The domain of interaction. Every functioning system 
can be viewed as carrying on an interaction with its 
environment. As we will discuss in a moment, the choice 
of  "system" and "environment" is relative to a specific 
viewpoint, but for the moment let us consider the system 
as viewed by the users. In this domain, the relevant 
objects are those that take part in the system's interac- 
tions: users, files, questions and answers, forms, maps, 
statistical summaries and notifications to departments. 
The processes to be described are those like querying the 
system, decribing a new event to be scheduled, and 
proposing a schedule for a new quarter. 

The domain of  interaction is concerned with descrip- 
tions that are largely orthogonal to those in the subject 
domain. We can talk about a question as having certain 
characteristics (e.g. looking for a yes-no answer) inde- 
pendently of  whether it is about a room or a lecture. We 
can talk about the filling out of  a form without reference 
to its specific contents. It is also (and more importantly) 
independent of  the domain of  implementation. From the 
traditional viewpoint this independence is a bit more 
difficult to see than the independence of  interaction and 
subject matter. Whereas a subject domain object (like 
classroom) clearly cuts across large parts of  the system, 
an interaction object (like a question or the process of  
filling out a form) is typically handled by a single com- 
ponent and described in terms of  its implementation. But 
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for the same reasons that we want to keep subject domain 
descriptions independent of their implementations, we 
must do the same with interaction descriptions. 

This view can be applied recursively to subparts and 
components of the system. In looking at one part (such 
as the on-site processor and its cluster of terminals) we 
can view it as an independent system interacting with an 
environment including both the users and the other parts 
of the overall system, such as the centralized data store. 
Even within a single implementation module (e.g. the 
question-answerer), we often want to describe what is 
happening as an interaction between several conceptual 
subsystems (the parser, the semantic analyzer, etc.). As 
with the larger system, it is vital to keep in mind the 
distinction between the interaction and implementation 
domains. In order to usefully view a system as made up 
of two distinct subsystems, they need not be implemented 
on physically different machines, or even in different 
pieces of the code. In general, any one viewpoint of a 
component includes a specification of a boundary. Be- 
havior across the boundary is seen in the domain of 
interactions, and behavior within the boundary is in the 
domain of implementation. That implementation can in 
turn be viewed as interaction between subcomponents. 

It is in the domain of interaction that there is cur- 
rently the most to be gained from developing bodies of 
descriptive structures to be shared by system builders. 
There are already many pieces that can be incorporated, 
including protocols (e.g. network communication proto- 
cols, graphics representation conventions), standardized 
interaction facilities (e.g. ASKUSER and DLISP (Dis- 
play Lisp) in Interlisp [57, 58], the Smalltalk display 
programs [35]), front-end query packages (in various 
artificial intelligence programs), database standards, and 
so forth. Currently each of these is in a world and 
formalism of its own. Given a sufficiently flexible tool 
for describing and integrating interaction packages, this 
level of description will be one of the basic building 
blocks for all systems. 

The domain of implementation. Every computer sys- 
tem operates on a set of physical devices with hardwired 
mechanisms for storing and manipulating data. It is in 
this domain that we normally think of programming. 
The detailed choice of algorithms, data structures, and 
configuration is determined by properties of the hard- 
ware and descriptive languages we have available for 
specifying its behavior. However, it would be a mistake 
to equate this domain with our current notions of pro- 
gramming. The objects in this domain include everything 
from individual memory bits and subroutines to subsys- 
tems (e.g. the file system, the memory management 
system, the operating system), running processes, hard- 
ware devices, and code segments. They include those 
things we talk about in programs and the debugger, and 
those found in machine and hardware manuals. In this 
domain, as in the others, a uniform system for description 
is needed, which is not primarily a language for speci- 
fying a set of instructions. 
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In addition to all those things that are directly deriv- 
able from the code, the manuals, and the state of the 
machine, there is also a body of process description. For 
example, it may be a property of a specific memory- 
management package that it periodically undergoes a 
garbage collection period of up to 5 seconds during 
which no new memory allocations can be made. Such 
"performance" characteristics may be vital for under- 
standing the interactions of a component with the rest of 
the system, but are not explicit in its code. Other descrip- 
tions bring into focus things that may be implicit in the 
code. A file system may delete a file if its creation process 
is interrupted in certain ways that would leave it in 
danger of being inconsistent. The code that does this 
may be distributed through various checks and actions, 
but for the programmer attempting to understand the 
program it is necessary to have a coherent overview of 
what is happening. 

Similarly, many of the things we think of as proper- 
ties of data structures are actually conventions spread 
through the code that manipulates them. Much of the 
work in structured programming has been to isolate these 
conventions into access functions that go into a "module" 
with the data structure [33, 36, and 38]. The object- 
oriented style of programming encouraged by Smalltalk 
[35] is another attempt to provide this kind of modularity. 
A system for implementation description would provide 
for stating these in a more general way along with those 
things that now appear only in the comments. As with 
procedures, data structures can also have implicit prop- 
erties (e.g. the expected maximal size of variable length 
fields) that need to be stated explicitly in order for a 
person to understand how they will interact with other 
components. 

The boundary between hardware and software has 
become increasingly blurred in the past few years 
through developments such as microcode, uniform logic 
arrays, and the extensive use of virtual machine archi- 
tecture. A programming system based on description 
would go further in unifying our approach to different 
levels of architecture. The emphasis is on an overall 
description of a component rather than the instructions 
needed to cause some piece of hardware to run it. A 
piece of software and a piece of hardware designed to 
achieve the same purpose would have descriptions that 
differed in details (e.g. timing), and in the specific aspect 
that described the code (or logic circuits) used to carry 
out the steps. They might be identical in the domain of 
interaction, and even to a large degree in the domain of 
implementation (for example, in the logical description 
of their data structures). 

A Sketch of a Higher Level Programming System 

So far we have been talking in a general way about 
the different domains of description and the kinds of 
things that might be said about a component or system 
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from each of their viewpoints. This does not yet provide 
a coherent picture of what a program will be. What do 
we see on the printed page or the screen? How is it 
organized? How do we do anything with it? 

Once again it is important not to let our preconcep- 
tions get in the way. Notions such as code, listing, file, 
and compilation are based on the idea of a program as 
a set of instructions. There need not be any directly 
corresponding objects in a higher level system. Instead, 
it should be based on something much more like what 
we now think of as an artificial intelligence system with 
its "knowledge base" of assertions and procedures. There 
will be a set of interrelated descriptions, stored in a form 
that makes it possible to retrieve, manipulate, and display 
them. These will include prototypes for categories of 
objects and processes (like classroom and filling out a 

form) and instances, which correspond to individual ob- 
jects and processes in one of the domains (such as the 
course CS 365 in Winter 1978, the contents of the third 
page of next quarter's schedule, and the process currently 
running in the database server). Instances can be de- 
scribed by more than one prototype, and prototypes are 
related into hierarchies with different degrees of abstrac- 
tion. The details of all this are still a matter for extensive 
research. One set of possibilities is being explored in 
KRL [6, 7], but the basic idea of higher level systems 
could be implemented using other descriptive represen- 
tations, such as semantic networks [8, 10, 14, and 15] and 
other frame-based systems [9, 11]. 

In addition to the basic description system, there will 
be a wide range of commonly useful prototypes and 
instances. Some of them (e.g. graphics formats, dates and 
times, communication protocols) will be in the subject 
and interaction domains. Others (such as the data struc- 
tures used in a particular database) will be in the imple- 
mentation domain. Some (such as descriptions of specific 
pieces of hardware and software that are being used) will 
be specific to the programming system. Others (such as 
those for abstract objects like sets and sequences, and for 
process structures) will be very general. In approaching 
a problem, a programmer will make use of this vocabu- 
lary of concepts and descriptive categories, both for 
interfacing with existing components and for organizing 
new ones. 

Earlier in the paper, we discussed the need for pro- 
gramming systems based on the description of both 
results and processes. In the light of the above discussion, 
we can see that this applies not only to the implementa- 
tion domain, but to the others as well. By shifting em- 
phasis away from programs made up of instructions 
(which are necessarily in the implementation domain) to 
a description of processes and results, it becomes possible 
to integrate descriptions in all three domains within a 
single formalism. 

A programmer's use of a higher level system will be 
highly interactive. Since the understanding of  a compo- 
nent comes from having multiple viewpoints, no single 
organization of the information on a printed page will 
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be adequate. The programmer needs to be able to reor- 
ganize the information dynamically, looking from one 
view and then another, going from great generality down 
to specific detail, and maneuvering around in the space 
of descriptions to view the interconnections. This will 
require an interface that is more sophisticated than the 
question-answering interfaces now used on artificial in- 
telligence knowledge bases. It seems likely that pictorial 
representations, interactive graphics, and "intelligent 
summarizing" will play a large role. Some current soft- 
ware development techniques (such as the Structured 
Analysis Design Technique [18]) emphasize the impor- 
tance of multiple viewpoints of analysis in documenta- 
tion and design. 

Of course, there always remains the task of providing 
a description of each component that is detailed enough 
to allow the system to run it. This will be part of 
providing a broader description, and may be done in 
stages. A very abstract specification of what a component 
does will be sufficient for a kind of "high level debug- 
ging" in which its interactions with other components 
can be analyzed and described without carrying out the 
steps at the lowest level. There is a whole range of 
operations that are now thought of as "automatic pro- 
gramming," which will enable the programmer to let the 
system fill in details once the overall behavior of the 
component has been specified. Some of these will be 
based on standardized defaults, others on automated 
analysis of performance characteristics. It will be all 
based on the availability of descriptions in the imple- 
mentation domain of the various machines and subsys- 
tems being used. 

As systems become more complex, the level of desir- 
able invisibility will rise. Current high level program- 
ming languages do not give the user the opportunity to 
decide just how the hardware registers of the machine 
will be used to store variables, since there is much more 
to be gained by a uniform integrated approach to their 
use by the compiler. Similarly, much of what we now 
think of as data structure and algorithm specification 
will be handled by programs that can take into account 
much more complex efficiency considerations than are 
practical for a human programmer. 

In summary, a programmer will use a programming 
system that contains a base of knowledge about the 
system he or she is working on, and of other potential 
components and concepts of programming that might be 
of use. The programmer will modify the descriptions of 
previously described components, and create high level 
descriptions of new ones to be added. These modifica- 
tions and additions may be from the viewpoints of all of 
the different domains, and will be carried out in coop- 
eration with the system, which checks for consistency, 
for consequences of new information, etc. Checking and 
debugging will be done at a variety of levels as the 
description becomes more detailed. The programming 
system will attempt to fill in details that are needed to 
completely specify the implementation, so the working 
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system as a whole can be run. The debugging process 
will make use of  sophisticated reasoning processes that 
can use all of  the different domains of  description in 
analyzing and reporting what is happening. 

which increase the mathematical tractability of  the de- 
scriptions. 

Wulf  [4] describes the motivations for the program- 
ming language Alphard in similar terms: 

What Needs  to Be  Done  

The notion of  higher level programming systems is 
not new. Integrated programming environments have 
been one of  the major areas of  development in Lisp 
systems [56], and one of  the major reasons for the DoD 
common language effort [3] is to encourage the devel- 
opment of  programming tools which are too complex 
and costly to be justified in a single project, or even a 
single specialized language. These systems, however, 
have evolved within the standard view of  programming, 
and although they contain many useful ideas, they are 
far from achieving the goals discussed above. We need 
further research in three distinct but interrelated areas: 
the development of  an effective descriptive calculus; the 
creation of  a body of  descriptive concepts for computa- 
tional processes; and the building of  a complex integrated 
system which uses them. 

A Descriptive Calculus 
The main thrust of  these ideas depends on the ability 

to create and manipulate descriptions in an effective, 
understandable way. There are existing formalisms for 
description (for example, the predicate calculus) which 
are clear and well-understood, but lack the richness 
typical in descriptions which people find useful. They 
can serve as a universal basis for description but only in 
the same sense that a Turing machine can express any 
computation. They lack the higher level structuring 
which makes it possible to manipulate descriptions at an 
appropriate level of  detail. As Dijkstra [2, p.5] observes: 

That the first-order predicate calculus was the most suitable 
candidate for the characterization of machine states was assumed 
right at the start; early experiences, however, were not too encour- 
aging, because it only seemed practicable in the simplest cases, and 
we discovered the second consequence: the large number of variables 
combined with the likely irregularity of the subsets to be character- 
ized very quickly made most of the formal expressions to be manip- 
ulated unmanageably long. 

The requirements for a descriptive language of  the 
kind I propose are quite different from those used in the 
mathematical foundations of  computation or program 
verification. Work in these areas (see, for example the 
collection of  papers in [22]) emphasizes the use of  de- 
scriptive languages in rigorous proofs of  the properties 
of  programs. A higher level programming system must 
instead emphasize the use of  descriptive languages for 
communication. The concentration must be on those 
aspects which aid in giving a person a clear overall 
understanding (at variable levels of  detail and from 
multiple points of  view), rather than on those aspects 

The "software crisis" is the result of our human limitations in 
dealing with complexity. To "solve" the problem we must reduce 
the "apparent complexity" of programs, and this reduction must 
occur in the program text .... We know something about the way 
humans have traditionally dealt with understanding complex prob- 
lems.., and we can try to mold the expression of a program so that 
it facilitates these techniques. 

If  we look at the ways in which people have "tradi- 
tionally dealt with understanding complex problems," 
we find many features of  natural language which serve 
to reduce complexity by allowing imprecision when pre- 
cision is not required. This is not an excuse for avoiding 
all precision, or a justification for "natural language 
programming." We need to understand the deep psycho- 
logical properties of  how people understand language, 
not mimic its superficial forms. The justification is not 
that natural language is "better" in some abstract sense, 
but that it is what we as people know how to use. As 
discussed above, the most essential feature of  a program- 
ming formalism is its understandability by programmers. 
We cannot turn programmers into native speakers of  
abstract mathematics, but we can turn our programming 
formalisms in the direction of  natural descriptive forms. 

There are artificial intelligence formalisms (such as 
semantic networks [8, 10, 14, and 15] and KR L [6, 7]) 
with increased dimensions of  expressiveness, but these 
are not yet at a level of  precision which would make 
them sufficiently understandable to be used in a system 
of  the required complexity. The characteristics which 
they explore (and which will need to be part of  a 
formalism to be used in a higher level programming 
system) include: 

Prototype hierarchies. The nouns and verbs of  a nat- 
ural language can be organized into hierarchies (or tax- 
onomies) which capture much of  the logical structure of  
what they describe. We know that a dog is an animal, 
and the answers to questions about dogs will often be 
derived through general properties of  animals. Systems 
such as semantic networks treat these deductions spe- 
cially, rather than dealing with them uniformly as a set 
of  universally quantified implications. This leads to 
greater efficiency for the common calculations, and pro- 
vides a structure which makes it much easier for a 
programmer to organize a knowledge base. These hier- 
archies contain information which could be thought of  
as a set of  independent facts, but has additional structure 
in the same sense that a structured program structures a 
set of  steps and jumps. 

The centrality of defaults. Most logical calculi are 
optimized for handling generalizations which are either 
true or false. They do not provide means for stating 
generalizations that are not completely universal, but are 
"usual" or "normal" or "expected." In natural descrip- 
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tions of any kind, people draw heavily on the ability to 
use information of a less formal sort and a kind ofceteris 
paribus reasoning in which a standard fact is assumed 
true unless there is an explicit reason to believe the 
contrary. One of the major directions in artificial intel- 
ligence representation research is the attempt to provide 
this capability in a formally clear system. The notion of 
a default value is familiar to every programmer, but its 
place in a formal calculus needs to be carefully worked 
out. 

The suppression of exceptional details. One of the 
major reasons for using precise formalizations is that 
they make everything explicit. For some purposes this is 
good, but there are times when understanding can come 
only through the suppression of detail. If we are trying 
to formally describe a program which normally involves 
simple input-output behavior (e.g. one that copies data 
from one place to another), we want to describe its 
behavior in a way which highlights that simplicity. If  
there are exceptional cases (e.g. when the storage allo- 
cator fails to find a sufficient block), these need to be 
described, but in a secondary place. This basic descrip- 
tion of an object cannot be cluttered up with all of the 
details needed for handling the contingencies. Formal- 
isms used in denotational semantics for programs dem- 
onstrate this problem well. In order to deal with a special 
escape at all, they demand that even the simplest pro- 
grams be described as operating on continuations, envi- 
ronments, etc., and this description permeates every level 
of what is said. 

Multiple levels of abstractions and instances. In dealing 
with programs and processes, we run into complexities 
involving the instantiation of general classes. For exam- 
ple, a specific algorithm (such as Euclid's algorithm) can 
be thought of as an instance of  a general class (numerical 
algorithms), or as a class whose instances are programs 
implementing the algorithm. Each of those programs is 
in turn both an instance (of the class of formal objects 
known as programs) and a description of a class of 
process instances, each of which is carrying it out. If  we 
look at the finer structure of programs, such as the 
instantiation of variables or pieces of code within loops 
similar phenomena arise. Higher order and typed logics 
deal in certain ways with the notion of  a class (predicate) 
which is also an instance, but their austerity makes them 
inadequate for capturing the rich set of ways in which 
people interleave levels of abstraction. Artificial intelli- 
gence formalisms have not yet dealt adequately with 
these issues, which are currently a topic of active inves- 
tigation. 

A Basis for Describing Processes  
Given a formalism for descriptions in general, we 

need prototypes for describing those things which are 
common to all of our programs (e.g. processes, programs, 
data structures, communication acts). This is a necessary 
kind of  library, just as a library of  standard data struc- 
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tures and statistical routines is a necessary part of  a 
system for statistical manipulations. It need not be fixed 
once and for all, but a good deal of it must be in place 
before the system is usable, and it must be held relatively 
uniform if the system is to be extendable. 

The domain which I believe is currently ripest for 
exploration is the description of processes. Traditional 
mathematics provides us with a broad variety of  concepts 
for what I have called "result specifications," and they 
are being applied to programming (for example, [19]). In 
describing processes, we are on shakier ground. There 
are many promising ideas floating around that need to 
be captured in a more precise form. The success of  higher 
level programming systems will depend on having a 
coherent body of descriptive categories which can cap- 
ture a variety of  modes for process description. There is 
a beginning of comprehensive work in this area, such as 
the development of  the Delta language for system de- 
scription [20], but most of the work so far has dealt with 
one or another aspect in isolation. 

Modularity and structured procedures. There has been 
a good deal of attention in recent years to the higher 
level structure of control constructs. In addition, lan- 
guages based on data abstractions (such as CLU [36], 
Alphard [38], and Mesa [33, 34]) provide for larger 
modules which encapsulate collections of data structures 
and procedures. Beginning from a different point of 
view, structured system description languages [18, 20] 
provide conceptual tools for describing the overall struc- 
ture of large systems. We need a consistent way of  talking 
about modularization and interaction between semi-in- 
dependent modules which can be applied to system 
structure at all different levels of detail. 

Structured data objects. Work on programming lan- 
guage constructs often emphasizes the structure of  the 
sequence of  operations, in terms of  loops, recursive calls, 
etc. [19]. A related notion in describing processes is the 
ability to hide detail by allowing the combination of  
objects into a larger "structured object," and to define 
unitary operations on this higher level object which 
invoke collections of operations on the components. This 
has been explored for simple mathematical objects (e.g. 
lists in Lisp's MAP functions [55], vectors and arrays in 
APL [25], sets in SETL [30] and VERS [24]), and seems 
applicable to more specialized semantic objects (in all of 
the three domains) as well. In many cases, much of what 
is now thought of as control structure can be implicit in 
the data structure, leading to notions of"nonprocedural" 
or "procedureless" languages [26, 28]. The interaction 
between control and data structure needs to be put into 
a theoretical framework. 

Program factoring--objects and procedures. In view- 
ing a process as a structured sequence of  individual steps, 
there are different ways to think about what each of  
those steps is. Most programming languages lead the 
programmer to think in terms of operations (either prim- 
itive or programmer-defined) to be carried out on argu- 
ments. Some (such as Simula [311, Smalltalk [35], and 
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Plasma [51]) think of typed objects which receive and 
interpret messages. Instead of organizing code around a 
single procedure (e.g. print or plus) which selects its 
action according to data type, they define classes (such 
as integer, list, etc), which select what to do on the basis 
of the message. Artificial intelligence languages take a 
more general approach in using pattern directed invoca- 
tion [5, 32]. Each step specifies a pattern (or goal) to be 
achieved. A database of pattern-action pairs is accessed 
to decide what steps to carry out: Each of these view- 
points is best for some aspects of programming, and we 
need to understand how to integrate them into a larger 
framework. 

States and transitions. There are two complementary 
ways of looking at a computational process~as a se- 
quence of operations or a sequence:of states. This duality 
has been exploited in the mathematical theory of com- 
putation, but has not really been integrated into pro- 
gramming languages. Transition nets and Petri nets [42, 
44] are state-oriented, rather than operation-oriented. 
Production systems [47] are state-oriented, with each 
production specifying a partial state description and an 
appropriate transition function (not the name of the new 
state, but a set of operations which produce the new 
state). Languages which provide ways of specifying ac- 
tions to be taken on special conditions [41] are really 
mixing state-transition description with the normal op- 
eration sequence. As with the operation/object distinc- 
t ionabove, the goal is to find a synthesis which allows a 
process to be described using a mixture of the conceptual 
viewpoints, and to be run on the basis of that description. 

Interacting processes and communication. The notions 
above deal primarily with a single process. The most 
significant direction in computing over the coming years 
will be towards multiple processes, both virtual (e.g. 
organizing a speech system as a series of separate proc- 
esses, even if it runs on a single PDP-t0 [49, 54]) and 
actual (e.g. networks of computers cooperating on a 
single task). There are a number of issues which have 
been dealt with by system designers at lower levels (like 
operating systems) which have not found their way into 
higher level languages. There is also a wealth of meta- 
phor provided by thinking of a computation as being 
carried on by a collection of independent individuals 
who must communicate by exchanging messages in a 
common language. We can draw many analogies from 
human communication. What language do they talk? 
Which subsystems need to be multilingual? What are the 
discourse rules for establishing and controlling message 
flow? Is it possible to learn a second language? How can 
two processes make use of shared knowledge to increase 
thc efficiency of communication? How can one process 
make use of an internal model of another process in 
order to facilitate communication and cooperation? 
Some of these issues are being explored in the multipro- 
cessor programming language PLITS [50] and are the 
basis for theoretical formalisms such as that of Hoare 
[521. 

A Complex System 
The kind of higher level programming system dis- 

cussed in this paper is itself a massive and complex 
system. Its subject matter is not an external one, like 
room-scheduling, but the reflective one-- the subject of 
programming. Much of the other work mentioned in this 
paper provides a starting point. Integrated programming 
systems, languages based on data abstraction, and rep- 
resentation languages are examples of work which can 
be incorporated. It is unlikely that a "crash program" to 
produce a unified higher level programming system 
would succeed today. There will have to be a careful 
program of bootstrapping to get from today's languages 
and systems to the one I have described. The reason for 
writing a paper of this sort (rather than setting out to 
build a system) is the recognition that the relevant ideas 
need more development, and the hope that people will 
turn their attention to them. 
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